Roll No.
Total No. of Pages : 02
Total No. of Questions: 07
B.Sc. (IT) (Sem.-2nd)

MATHEMATICS-II (DISCRETE)
Subject Code : BS-104
Paper ID : [B0406]
Time: 3 Hrs.
Max. Marks : $\mathbf{6 0}$

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

I.
(a) Define Intersection of́ two sets. Give an example.
(b) Define Disjunction. Give an example.
(c) Show that $(p \rightarrow q) \Leftrightarrow(\sim p \vee \mathrm{q})$ is tautology.
(d) Find the cardinal number of set

$$
\mathrm{A}=\left\{x: x^{2}=25,3 x=6\right\}
$$

(e) Evaluate $\mathrm{C}(19,17)+\mathrm{C}(19,18)$.
(f) Define Reflexive and Symmetric relations.
(g) Let $\mathrm{S}=\{(a, b): a-b$ is even $\}$ is relation on $\mathrm{A}=\{1,2,3,4\}$. Find matrix of S .
(h) Define function.
(i) Define generating function.
(j) Prove by using Boolean Algebra that:

$$
\mathrm{A}+\overline{\mathrm{A}} \cdot \mathrm{C}=\mathrm{A}+\mathrm{C}
$$

SECTION-B

2. (a) Prove that:
$\mathrm{A} \cap(\mathrm{B} \backslash \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \backslash(\mathrm{A} \cap \mathrm{C})$
(b) Among 50 students in a class, 26 got an A in the first examination and 21 got an A in the second examination. If 17 students did not get an A in either examination, how many students got A in both the examinations?
3. Show by mathematical induction:

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2} \tag{10}
\end{equation*}
$$

4. Write down the truth table of the following statement :

$$
\begin{equation*}
[p \rightarrow(q \vee r)] \wedge(p \leftrightarrow \sim r) \tag{10}
\end{equation*}
$$

5. Solve :

$$
\begin{align*}
& S(K)-7 S(K-1)+10 S(K-2)=0 \\
& S(0)=4, S(1)=17 \tag{10}
\end{align*}
$$

6. A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ will be invertible if f is one to one and onto.
7. (a) Determine n if:

$$
\begin{equation*}
\mathrm{C}(2 n, 3): \mathrm{C}(n, 3)=11: 1 \tag{5}
\end{equation*}
$$

(b) If $\mathrm{F}=\bar{x} y+\bar{y} z+z \bar{x}$. Find $\overline{\mathrm{F}}$ and check that $\mathrm{F} \overline{\mathrm{F}}=0$ and $\mathrm{F}+\overline{\mathrm{F}}=1$.

